حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية xy^3dx+(y+1)e^(-x)dy=0
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
اضرب كلا الطرفين في .
خطوة 3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
أخرِج العامل من .
خطوة 3.1.3
ألغِ العامل المشترك.
خطوة 3.1.4
أعِد كتابة العبارة.
خطوة 3.2
اضرب في .
خطوة 3.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.4.2
أخرِج العامل من .
خطوة 3.4.3
أخرِج العامل من .
خطوة 3.4.4
ألغِ العامل المشترك.
خطوة 3.4.5
أعِد كتابة العبارة.
خطوة 3.5
اجمع و.
خطوة 3.6
انقُل السالب أمام الكسر.
خطوة 4
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن التكامل في كل طرف.
خطوة 4.2
أوجِد تكامل الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
انقُل خارج القاسم برفعها إلى القوة .
خطوة 4.2.1.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.2.2
اضرب في .
خطوة 4.2.2
اضرب .
خطوة 4.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1.1.1
ارفع إلى القوة .
خطوة 4.2.3.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.2.3.1.2
اطرح من .
خطوة 4.2.3.2
اضرب في .
خطوة 4.2.4
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 4.2.5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 4.2.6
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 4.2.7
بسّط.
خطوة 4.2.8
أعِد ترتيب الحدود.
خطوة 4.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4.3.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 4.3.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.2.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.2.2.1
اضرب في .
خطوة 4.3.2.2.2.2
اضرب في .
خطوة 4.3.3
أوجِد التكامل بالتجزئة باستخدام القاعدة ، حيث و.
خطوة 4.3.4
تكامل بالنسبة إلى هو .
خطوة 4.3.5
بسّط.
خطوة 4.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .