حساب التفاضل والتكامل الأمثلة

خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3
بسّط بالتحليل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
انقُل إلى يسار .
خطوة 4.3.3
أخرِج السالب.
خطوة 4.3.4
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
أعِد كتابة بالصيغة .
خطوة 4.3.4.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.4.2.2
اضرب في .
خطوة 5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 7
اضرب في .
خطوة 8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
طبّق خاصية التوزيع.
خطوة 8.2
اضرب في .
خطوة 8.3
أعِد ترتيب الحدود.
خطوة 8.4
أعِد ترتيب العوامل في .