حساب التفاضل والتكامل الأمثلة

Encuentre la Linealización en a=-2 f(x)=x^3-x^2+5 , a=-2
,
خطوة 1
ضع في اعتبارك الدالة المُستخدمة لإيجاد الخطية عند .
خطوة 2
عوّض بقيمة في الدالة الخطية.
خطوة 3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
احذِف الأقواس.
خطوة 3.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
ارفع إلى القوة .
خطوة 3.2.2.2
ارفع إلى القوة .
خطوة 3.2.2.3
اضرب في .
خطوة 3.2.3
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
اطرح من .
خطوة 3.2.3.2
أضف و.
خطوة 4
أوجِد المشتق واحسِب قيمته عند .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد مشتق .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.3.2
أضف و.
خطوة 4.2
استبدِل المتغير بـ في العبارة.
خطوة 4.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
ارفع إلى القوة .
خطوة 4.3.1.2
اضرب في .
خطوة 4.3.1.3
اضرب في .
خطوة 4.3.2
أضف و.
خطوة 5
عوّض بالمركّبات في الدالة الخطية لإيجاد الإخطاط عند .
خطوة 6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
طبّق خاصية التوزيع.
خطوة 6.1.2
اضرب في .
خطوة 6.2
أضف و.
خطوة 7