حساب التفاضل والتكامل الأمثلة

Encuentre dx/dy y=x^( اللوغاريتم الطبيعي لـ x)
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
أوجِد مشتقة المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة القوة المعممة التي تنص على أن هو حيث و.
خطوة 3.2
أعِد كتابة بالصيغة .
خطوة 3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
اجمع و.
خطوة 3.4.2
اجمع و.
خطوة 3.4.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.3.1
أخرِج العامل من .
خطوة 3.4.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.3.2.1
ارفع إلى القوة .
خطوة 3.4.3.2.2
أخرِج العامل من .
خطوة 3.4.3.2.3
ألغِ العامل المشترك.
خطوة 3.4.3.2.4
أعِد كتابة العبارة.
خطوة 3.4.3.2.5
اقسِم على .
خطوة 3.5
أعِد كتابة بالصيغة .
خطوة 3.6
أعِد ترتيب عوامل .
خطوة 3.7
أضف و.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
أعِد ترتيب و.
خطوة 3.7.2
أضف و.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اقسِم كل حد في على .
خطوة 5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.1.2
أعِد كتابة العبارة.
خطوة 5.2.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.2.1
ألغِ العامل المشترك.
خطوة 5.2.2.2.2
أعِد كتابة العبارة.
خطوة 5.2.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.3.1
ألغِ العامل المشترك.
خطوة 5.2.2.3.2
اقسِم على .
خطوة 5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.3.1
أعِد ترتيب العوامل في .
خطوة 6
استبدِل بـ .