إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
عوّض بـ في المعادلة. سيسهّل ذلك استخدام الصيغة التربيعية.
خطوة 2
خطوة 2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أعِد كتابة في صورة زائد
خطوة 2.1.3
طبّق خاصية التوزيع.
خطوة 2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.1.2
اقسِم على .
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
عوّض بالقيمة الحقيقية لـ مرة أخرى في المعادلة المحلولة.
خطوة 8
أوجِد قيمة في المعادلة الأولى.
خطوة 9
خطوة 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 9.2
بسّط .
خطوة 9.2.1
أعِد كتابة بالصيغة .
خطوة 9.2.2
أي جذر لـ هو .
خطوة 9.2.3
بسّط القاسم.
خطوة 9.2.3.1
أعِد كتابة بالصيغة .
خطوة 9.2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 9.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 9.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 9.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 9.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 10
أوجِد قيمة في المعادلة الثانية.
خطوة 11
خطوة 11.1
احذِف الأقواس.
خطوة 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 11.3
بسّط .
خطوة 11.3.1
أعِد كتابة بالصيغة .
خطوة 11.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 11.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 11.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 11.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 11.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 12
حل هو .
خطوة 13
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: