إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
بسّط كل حد.
خطوة 1.1.1
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 1.1.2
طبّق خاصية التوزيع.
خطوة 1.1.3
اضرب في .
خطوة 1.1.4
اضرب في بجمع الأُسس.
خطوة 1.1.4.1
انقُل .
خطوة 1.1.4.2
اضرب في .
خطوة 1.1.4.2.1
ارفع إلى القوة .
خطوة 1.1.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.4.3
أضف و.
خطوة 1.2
أضف و.
خطوة 2
خطوة 2.1
أخرِج العامل من .
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.2
أعِد كتابة بالصيغة .
خطوة 2.3
حلّل إلى عوامل.
خطوة 2.3.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.3.2
احذِف الأقواس غير الضرورية.
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4.2.2
بسّط الطرف الأيمن.
خطوة 4.2.2.1
القيمة الدقيقة لـ هي .
خطوة 4.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 4.2.4
اطرح من .
خطوة 4.2.5
أوجِد فترة .
خطوة 4.2.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.5.4
اقسِم على .
خطوة 4.2.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
اطرح من كلا المتعادلين.
خطوة 5.2.2
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 5.2.3
بسّط الطرف الأيمن.
خطوة 5.2.3.1
القيمة الدقيقة لـ هي .
خطوة 5.2.4
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 5.2.5
بسّط العبارة لإيجاد الحل الثاني.
خطوة 5.2.5.1
اطرح من .
خطوة 5.2.5.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 5.2.6
أوجِد فترة .
خطوة 5.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.6.4
اقسِم على .
خطوة 5.2.7
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 5.2.7.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 5.2.7.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.7.3
اجمع الكسور.
خطوة 5.2.7.3.1
اجمع و.
خطوة 5.2.7.3.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.7.4
بسّط بَسْط الكسر.
خطوة 5.2.7.4.1
اضرب في .
خطوة 5.2.7.4.2
اطرح من .
خطوة 5.2.7.5
اسرِد الزوايا الجديدة.
خطوة 5.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.2.1
اقسِم كل حد في على .
خطوة 6.2.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.2.2.2.2
اقسِم على .
خطوة 6.2.2.3
بسّط الطرف الأيمن.
خطوة 6.2.2.3.1
اقسِم على .
خطوة 6.2.3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2.4
بسّط الطرف الأيمن.
خطوة 6.2.4.1
القيمة الدقيقة لـ هي .
خطوة 6.2.5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.2.6
بسّط .
خطوة 6.2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.6.2
اجمع الكسور.
خطوة 6.2.6.2.1
اجمع و.
خطوة 6.2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.2.6.3
بسّط بَسْط الكسر.
خطوة 6.2.6.3.1
انقُل إلى يسار .
خطوة 6.2.6.3.2
اطرح من .
خطوة 6.2.7
أوجِد فترة .
خطوة 6.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.2.7.4
اقسِم على .
خطوة 6.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 8
وحّد الإجابات.
، لأي عدد صحيح