الرياضيات الأساسية الأمثلة

خطوة 1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
انقُل .
خطوة 1.2.2
اضرب في .
خطوة 1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
أخرِج العامل من .
خطوة 1.3.3
ألغِ العامل المشترك.
خطوة 1.3.4
أعِد كتابة العبارة.
خطوة 1.4
اجمع و.
خطوة 1.5
اضرب في .
خطوة 1.6
اجمع و.
خطوة 2
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اقسِم كل حد في على .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
اقسِم على .
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.2.1
أخرِج العامل من .
خطوة 3.3.1.2.2
ألغِ العامل المشترك.
خطوة 3.3.1.2.3
أعِد كتابة العبارة.
خطوة 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة بالصيغة .
خطوة 5.2
أي جذر لـ هو .
خطوة 5.3
اضرب في .
خطوة 5.4
جمّع وبسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
اضرب في .
خطوة 5.4.2
ارفع إلى القوة .
خطوة 5.4.3
ارفع إلى القوة .
خطوة 5.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.4.5
أضف و.
خطوة 5.4.6
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.6.1
استخدِم لكتابة في صورة .
خطوة 5.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.4.6.3
اجمع و.
خطوة 5.4.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.6.4.1
ألغِ العامل المشترك.
خطوة 5.4.6.4.2
أعِد كتابة العبارة.
خطوة 5.4.6.5
احسِب قيمة الأُس.
خطوة 6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: