إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
لها العاملان و.
خطوة 2.5
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.6
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.7
اضرب في .
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.2.1
أخرِج العامل من .
خطوة 3.2.1.2.2
ألغِ العامل المشترك.
خطوة 3.2.1.2.3
أعِد كتابة العبارة.
خطوة 3.2.1.3
ألغِ العامل المشترك لـ .
خطوة 3.2.1.3.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
طبّق خاصية التوزيع.
خطوة 3.2.1.5
اضرب في .
خطوة 3.2.1.6
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.7
ألغِ العامل المشترك لـ .
خطوة 3.2.1.7.1
أخرِج العامل من .
خطوة 3.2.1.7.2
ألغِ العامل المشترك.
خطوة 3.2.1.7.3
أعِد كتابة العبارة.
خطوة 3.2.1.8
ألغِ العامل المشترك لـ .
خطوة 3.2.1.8.1
ألغِ العامل المشترك.
خطوة 3.2.1.8.2
أعِد كتابة العبارة.
خطوة 3.2.1.9
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.2.1.9.1
طبّق خاصية التوزيع.
خطوة 3.2.1.9.2
طبّق خاصية التوزيع.
خطوة 3.2.1.9.3
طبّق خاصية التوزيع.
خطوة 3.2.1.10
بسّط ووحّد الحدود المتشابهة.
خطوة 3.2.1.10.1
بسّط كل حد.
خطوة 3.2.1.10.1.1
اضرب في .
خطوة 3.2.1.10.1.2
انقُل إلى يسار .
خطوة 3.2.1.10.1.3
اضرب في .
خطوة 3.2.1.10.2
اطرح من .
خطوة 3.2.2
بسّط بجمع الحدود.
خطوة 3.2.2.1
اطرح من .
خطوة 3.2.2.2
اطرح من .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
اضرب في .
خطوة 4
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.1.1
اطرح من كلا المتعادلين.
خطوة 4.1.2
اطرح من .
خطوة 4.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 4.2.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 4.2.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 4.2.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.2.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.4.2
أضف إلى كلا المتعادلين.
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أضف إلى كلا المتعادلين.
خطوة 4.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.