إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط كل حد.
خطوة 2.2.1.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2
أعِد كتابة العبارة.
خطوة 2.2.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.3.1
بسّط كل حد.
خطوة 2.2.1.3.1.1
اضرب في .
خطوة 2.2.1.3.1.2
اضرب في .
خطوة 2.2.1.3.1.3
اضرب في .
خطوة 2.2.1.3.2
أضف و.
خطوة 2.2.1.4
اضرب في .
خطوة 2.2.1.5
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.5.1
طبّق خاصية التوزيع.
خطوة 2.2.1.5.2
طبّق خاصية التوزيع.
خطوة 2.2.1.5.3
طبّق خاصية التوزيع.
خطوة 2.2.1.6
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.6.1
بسّط كل حد.
خطوة 2.2.1.6.1.1
اضرب في بجمع الأُسس.
خطوة 2.2.1.6.1.1.1
انقُل .
خطوة 2.2.1.6.1.1.2
اضرب في .
خطوة 2.2.1.6.1.2
اضرب في .
خطوة 2.2.1.6.1.3
أعِد كتابة بالصيغة .
خطوة 2.2.1.6.1.4
اضرب في .
خطوة 2.2.1.6.2
اطرح من .
خطوة 2.2.2
بسّط بجمع الحدود.
خطوة 2.2.2.1
أضف و.
خطوة 2.2.2.2
أضف و.
خطوة 2.2.2.3
اطرح من .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
ألغِ العامل المشترك لـ .
خطوة 2.3.1.1
أخرِج العامل من .
خطوة 2.3.1.2
ألغِ العامل المشترك.
خطوة 2.3.1.3
أعِد كتابة العبارة.
خطوة 2.3.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.3.2.1
طبّق خاصية التوزيع.
خطوة 2.3.2.2
طبّق خاصية التوزيع.
خطوة 2.3.2.3
طبّق خاصية التوزيع.
خطوة 2.3.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.3.3.1
بسّط كل حد.
خطوة 2.3.3.1.1
اضرب في .
خطوة 2.3.3.1.2
اضرب في .
خطوة 2.3.3.1.3
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.3.1.4
اضرب في بجمع الأُسس.
خطوة 2.3.3.1.4.1
انقُل .
خطوة 2.3.3.1.4.2
اضرب في .
خطوة 2.3.3.1.5
اضرب في .
خطوة 2.3.3.1.6
اضرب .
خطوة 2.3.3.1.6.1
اضرب في .
خطوة 2.3.3.1.6.2
اضرب في .
خطوة 2.3.3.2
أضف و.
خطوة 3
خطوة 3.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
أضف إلى كلا المتعادلين.
خطوة 3.1.3
أضف و.
خطوة 3.1.4
اطرح من .
خطوة 3.2
أضف إلى كلا المتعادلين.
خطوة 3.3
أضف و.
خطوة 3.4
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.1.1
أخرِج العامل من .
خطوة 3.4.1.2
أخرِج العامل من .
خطوة 3.4.1.3
أخرِج العامل من .
خطوة 3.4.1.4
أخرِج العامل من .
خطوة 3.4.1.5
أخرِج العامل من .
خطوة 3.4.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 3.4.2.1
أعِد كتابة بالصيغة .
خطوة 3.4.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 3.4.2.3
أعِد كتابة متعدد الحدود.
خطوة 3.4.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 3.5
اقسِم كل حد في على وبسّط.
خطوة 3.5.1
اقسِم كل حد في على .
خطوة 3.5.2
بسّط الطرف الأيسر.
خطوة 3.5.2.1
ألغِ العامل المشترك لـ .
خطوة 3.5.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.2.1.2
اقسِم على .
خطوة 3.5.3
بسّط الطرف الأيمن.
خطوة 3.5.3.1
اقسِم على .
خطوة 3.6
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7
أضف إلى كلا المتعادلين.