إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
أخرِج العامل من .
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أخرِج العامل من .
خطوة 1.2.3
أخرِج العامل من .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
لها العاملان و.
خطوة 2.5
اضرب في .
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.8
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.2
اجمع و.
خطوة 3.2.1.3
ألغِ العامل المشترك لـ .
خطوة 3.2.1.3.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
ألغِ العامل المشترك لـ .
خطوة 3.2.1.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.4.2
ألغِ العامل المشترك.
خطوة 3.2.1.4.3
أعِد كتابة العبارة.
خطوة 3.2.2
اطرح من .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2
ألغِ العامل المشترك لـ .
خطوة 3.3.2.1
ألغِ العامل المشترك.
خطوة 3.3.2.2
أعِد كتابة العبارة.
خطوة 3.3.3
ألغِ العامل المشترك لـ .
خطوة 3.3.3.1
ألغِ العامل المشترك.
خطوة 3.3.3.2
أعِد كتابة العبارة.
خطوة 4
بما أن ، ستظل المعادلة صحيحة دائمًا لأي قيمة لـ .
جميع الأعداد الحقيقية
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
جميع الأعداد الحقيقية
ترميز الفترة: