الرياضيات الأساسية الأمثلة

Resolver para y 2y = square root of 6-5y
خطوة 1
بما أن الجذر يقع على المتعادل الأيمن، بدّل الأطراف بحيث يصبح على المتعادل الأيسر.
خطوة 2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 3.2.1.2
بسّط.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
طبّق قاعدة الضرب على .
خطوة 3.3.1.2
ارفع إلى القوة .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
أعِد ترتيب العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
انقُل .
خطوة 4.2.1.1.2
أعِد ترتيب و.
خطوة 4.2.1.2
أخرِج العامل من .
خطوة 4.2.1.3
أخرِج العامل من .
خطوة 4.2.1.4
أعِد كتابة بالصيغة .
خطوة 4.2.1.5
أخرِج العامل من .
خطوة 4.2.1.6
أخرِج العامل من .
خطوة 4.2.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1.1
أخرِج العامل من .
خطوة 4.2.2.1.1.2
أعِد كتابة في صورة زائد
خطوة 4.2.2.1.1.3
طبّق خاصية التوزيع.
خطوة 4.2.2.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 4.2.2.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.2.2.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 4.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.4.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.2.1
اقسِم كل حد في على .
خطوة 4.4.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.4.2.2.2.1.2
اقسِم على .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
اطرح من كلا المتعادلين.
خطوة 4.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: