إدخال مسألة...
الجبر الأمثلة
(0,0)(0,0) , (3,5)(3,5)
خطوة 1
استخدِم y=mx+by=mx+b لحساب معادلة الخط المستقيم، حيث mm يمثل الميل وbb تمثل نقطة التقاطع مع المحور الصادي.
لحساب معادلة الخط المستقيم، استخدِم الصيغة y=mx+by=mx+b.
خطوة 2
الميل يساوي التغيير في yy على التغيير في xx، أو فرق الصادات على فرق السينات.
m=(تغيير في ص)(تغيير في س)
خطوة 3
التغيير في x يساوي الفرق في الإحداثيات السينية (يُعرف أيضًا بفرق السينات)، أما التغيير في y يساوي الفرق في الإحداثيات الصادية (يُعرف أيضًا بفرق الصادات).
m=y2-y1x2-x1
خطوة 4
عوّض بقيمتَي x وy في المعادلة لإيجاد الميل.
m=5-(0)3-(0)
خطوة 5
خطوة 5.1
بسّط بَسْط الكسر.
خطوة 5.1.1
اضرب -1 في 0.
m=5+03-(0)
خطوة 5.1.2
أضف 5 و0.
m=53-(0)
m=53-(0)
خطوة 5.2
بسّط القاسم.
خطوة 5.2.1
اضرب -1 في 0.
m=53+0
خطوة 5.2.2
أضف 3 و0.
m=53
m=53
m=53
خطوة 6
خطوة 6.1
استخدِم قاعدة معادلة الخط المستقيم لإيجاد b.
y=mx+b
خطوة 6.2
عوّض بقيمة m في المعادلة.
y=(53)x+b
خطوة 6.3
عوّض بقيمة x في المعادلة.
y=(53)⋅(0)+b
خطوة 6.4
عوّض بقيمة y في المعادلة.
0=(53)⋅(0)+b
خطوة 6.5
أوجِد قيمة b.
خطوة 6.5.1
أعِد كتابة المعادلة في صورة 53⋅0+b=0.
53⋅0+b=0
خطوة 6.5.2
بسّط 53⋅0+b.
خطوة 6.5.2.1
اضرب 53 في 0.
0+b=0
خطوة 6.5.2.2
أضف 0 وb.
b=0
b=0
b=0
b=0
خطوة 7
بما أن قيم m (الميل) وb (نقطة التقاطع مع المحور الصادي) أصبحت معروفة الآن، فعوّض بها في y=mx+b لإيجاد معادلة الخط المستقيم.
y=53x
خطوة 8
