الجبر الأمثلة

أوجد الجذور باستخدام اختبار نظرية الجذور f(x)=4x^2-25
خطوة 1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 3
عوّض بالجذور الممكنة واحدًا تلو الآخر في متعدد الحدود لإيجاد الجذور الفعلية. وبسّط للتحقق مما إذا كانت القيمة تساوي ، وهو ما يعني أنها تمثل جذرًا.
خطوة 4
بسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هي جذر متعدد الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
طبّق قاعدة الضرب على .
خطوة 4.1.2
ارفع إلى القوة .
خطوة 4.1.3
ارفع إلى القوة .
خطوة 4.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.4.1
ألغِ العامل المشترك.
خطوة 4.1.4.2
أعِد كتابة العبارة.
خطوة 4.2
اطرح من .
خطوة 5
بما أن جذر معروف، اقسم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 6
بعد ذلك، أوجِد جذور متعدد الحدود المتبقي. انخفض ترتيب متعدد الحدود بمقدار .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
ضَع الأعداد التي تمثل المقسوم عليه والمقسوم في شكل يشبه القسمة.
  
خطوة 6.2
يُوضع العدد الأول في المقسوم في الموضع الأول من المساحة الناتجة (أسفل الخط الأفقي).
  
خطوة 6.3
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
  
خطوة 6.4
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
  
خطوة 6.5
اضرب المُدخل الأحدث في النتيجة في المقسوم عليه وضَع نتيجة أسفل الحد التالي في المقسوم .
 
خطوة 6.6
أضف حاصل الضرب والعدد من المقسوم وضع النتيجة في الموضع التالي على خط النتيجة.
 
خطوة 6.7
تصبح جميع الأعداد ماعدا العدد الأخير معاملات خارج القسمة في متعدد الحدود. وتكون القيمة الأخيرة في خط النتيجة هي الباقي.
خطوة 6.8
بسّط ناتج قسمة متعدد الحدود.
خطوة 7
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 7.1
أخرِج العامل من .
خطوة 7.2
أخرِج العامل من .
خطوة 7.3
أخرِج العامل من .
خطوة 8
أضف إلى كلا المتعادلين.
خطوة 9
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
اقسِم كل حد في على .
خطوة 9.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1.1
ألغِ العامل المشترك.
خطوة 9.2.1.2
اقسِم على .
خطوة 10
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 11
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
أعِد كتابة بالصيغة .
خطوة 11.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
أعِد كتابة بالصيغة .
خطوة 11.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 11.3
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 11.3.1
أعِد كتابة بالصيغة .
خطوة 11.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 12
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 12.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 12.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 12.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 13