إدخال مسألة...
الجبر الأمثلة
خطوة 1
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .
خطوة 2
هذه الصيغة هي صيغة القطع الزائد. استخدِم هذه الصيغة لتحديد القيم المُستخدمة لإيجاد رؤوس القطع الزائد وخطوط تقاربه.
خطوة 3
طابِق القيم الموجودة في هذا القطع الزائد بقيم الصيغة القياسية. يمثل المتغير الإزاحة الأفقية x عن نقطة الأصل، ويمثل الإزاحة الرأسية y عن نقطة الأصل، .
خطوة 4
خطوة 4.1
أوجِد المسافة من المركز إلى بؤرة القطع الزائد باستخدام القاعدة التالية.
خطوة 4.2
عوّض بقيمتَي و في القاعدة.
خطوة 4.3
بسّط.
خطوة 4.3.1
أعِد كتابة بالصيغة .
خطوة 4.3.1.1
استخدِم لكتابة في صورة .
خطوة 4.3.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.1.3
اجمع و.
خطوة 4.3.1.4
ألغِ العامل المشترك لـ .
خطوة 4.3.1.4.1
ألغِ العامل المشترك.
خطوة 4.3.1.4.2
أعِد كتابة العبارة.
خطوة 4.3.1.5
احسِب قيمة الأُس.
خطوة 4.3.2
أعِد كتابة بالصيغة .
خطوة 4.3.2.1
استخدِم لكتابة في صورة .
خطوة 4.3.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.3.2.3
اجمع و.
خطوة 4.3.2.4
ألغِ العامل المشترك لـ .
خطوة 4.3.2.4.1
ألغِ العامل المشترك.
خطوة 4.3.2.4.2
أعِد كتابة العبارة.
خطوة 4.3.2.5
احسِب قيمة الأُس.
خطوة 4.3.3
بسّط العبارة.
خطوة 4.3.3.1
أضف و.
خطوة 4.3.3.2
أعِد كتابة بالصيغة .
خطوة 4.3.3.3
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 5
خطوة 5.1
يمكن إيجاد البؤرة الأولى لقطع زائد بجمع مع .
خطوة 5.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 5.3
يمكن إيجاد البؤرة الثانية لقطع زائد بطرح من .
خطوة 5.4
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 5.5
تتبع بؤر القطع الزائد صيغة . القطوع الزائدة لها بؤرتان.
خطوة 6