إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
بسّط الطرف الأيسر.
خطوة 1.1.1
بسّط .
خطوة 1.1.1.1
بسّط كل حد.
خطوة 1.1.1.1.1
قسّم الكسر إلى كسرين.
خطوة 1.1.1.1.2
احذِف العامل المشترك لـ و.
خطوة 1.1.1.1.2.1
أخرِج العامل من .
خطوة 1.1.1.1.2.2
ألغِ العوامل المشتركة.
خطوة 1.1.1.1.2.2.1
أخرِج العامل من .
خطوة 1.1.1.1.2.2.2
ألغِ العامل المشترك.
خطوة 1.1.1.1.2.2.3
أعِد كتابة العبارة.
خطوة 1.1.1.1.3
طبّق خاصية التوزيع.
خطوة 1.1.1.2
اجمع الكسور.
خطوة 1.1.1.2.1
اجمع البسوط على القاسم المشترك.
خطوة 1.1.1.2.2
بسّط العبارة.
خطوة 1.1.1.2.2.1
اطرح من .
خطوة 1.1.1.2.2.2
انقُل السالب أمام الكسر.
خطوة 1.2
أضف إلى كلا المتعادلين.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.9
اضرب في .
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.1
أخرِج العامل من .
خطوة 3.2.1.1.2
ألغِ العامل المشترك.
خطوة 3.2.1.1.3
أعِد كتابة العبارة.
خطوة 3.2.1.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.2.2
ألغِ العامل المشترك.
خطوة 3.2.1.2.3
أعِد كتابة العبارة.
خطوة 3.2.1.3
اضرب في .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
اضرب في .
خطوة 4
خطوة 4.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 4.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.2
أضف إلى كلا المتعادلين.
خطوة 4.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.4.2
اطرح من كلا المتعادلين.
خطوة 4.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.