إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.1.3
اضرب في .
خطوة 3.2.1.4
انقُل إلى يسار .
خطوة 3.2.1.5
ألغِ العامل المشترك لـ .
خطوة 3.2.1.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.5.2
أخرِج العامل من .
خطوة 3.2.1.5.3
ألغِ العامل المشترك.
خطوة 3.2.1.5.4
أعِد كتابة العبارة.
خطوة 3.2.1.6
طبّق خاصية التوزيع.
خطوة 3.2.1.7
اضرب في .
خطوة 3.2.2
جمّع الحدود المتعاكسة في .
خطوة 3.2.2.1
اطرح من .
خطوة 3.2.2.2
أضف و.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
ألغِ العامل المشترك.
خطوة 3.3.1.3
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.1.1
اطرح من كلا المتعادلين.
خطوة 4.1.2
اطرح من .
خطوة 4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 4.3
بسّط .
خطوة 4.3.1
أعِد كتابة بالصيغة .
خطوة 4.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.