الجبر الأمثلة

Resolver para x x=2 الجذر التربيعي لـ x-1
خطوة 1
بما أن الجذر يقع على المتعادل الأيمن، بدّل الأطراف بحيث يصبح على المتعادل الأيسر.
خطوة 2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.3.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
بسّط.
خطوة 3.2.1.5
طبّق خاصية التوزيع.
خطوة 3.2.1.6
اضرب في .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
أعِد ترتيب العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
انقُل .
خطوة 4.2.1.1.2
أعِد ترتيب و.
خطوة 4.2.1.2
أخرِج العامل من .
خطوة 4.2.1.3
أخرِج العامل من .
خطوة 4.2.1.4
أعِد كتابة بالصيغة .
خطوة 4.2.1.5
أخرِج العامل من .
خطوة 4.2.1.6
أخرِج العامل من .
خطوة 4.2.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 4.2.2.3
أعِد كتابة متعدد الحدود.
خطوة 4.2.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.3.2.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
اقسِم على .
خطوة 4.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5
أضف إلى كلا المتعادلين.