إدخال مسألة...
الجبر الأمثلة
5x-4y=205x−4y=20
خطوة 1
خطوة 1.1
اطرح 5x5x من كلا المتعادلين.
-4y=20-5x−4y=20−5x
خطوة 1.2
اقسِم كل حد في -4y=20-5x−4y=20−5x على -4−4 وبسّط.
خطوة 1.2.1
اقسِم كل حد في -4y=20-5x−4y=20−5x على -4−4.
-4y-4=20-4+-5x-4−4y−4=20−4+−5x−4
خطوة 1.2.2
بسّط الطرف الأيسر.
خطوة 1.2.2.1
ألغِ العامل المشترك لـ -4−4.
خطوة 1.2.2.1.1
ألغِ العامل المشترك.
-4y-4=20-4+-5x-4
خطوة 1.2.2.1.2
اقسِم y على 1.
y=20-4+-5x-4
y=20-4+-5x-4
y=20-4+-5x-4
خطوة 1.2.3
بسّط الطرف الأيمن.
خطوة 1.2.3.1
بسّط كل حد.
خطوة 1.2.3.1.1
اقسِم 20 على -4.
y=-5+-5x-4
خطوة 1.2.3.1.2
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
y=-5+5x4
y=-5+5x4
y=-5+5x4
y=-5+5x4
y=-5+5x4
خطوة 2
خطوة 2.1
صيغة تقاطع الميل هي y=mx+b، حيث m هي الميل وb هي نقطة التقاطع مع المحور الصادي.
y=mx+b
خطوة 2.2
أعِد ترتيب -5 و5x4.
y=5x4-5
خطوة 2.3
أعِد ترتيب الحدود.
y=54x-5
y=54x-5
خطوة 3
خطوة 3.1
أوجِد قيمتَي m وb باستخدام الصيغة y=mx+b.
m=54
b=-5
خطوة 3.2
ميل الخط المستقيم يمثل قيمة m، ونقطة التقاطع مع المحور الصادي تمثل قيمة b.
الميل: 54
نقطة التقاطع مع المحور الصادي: (0,-5)
الميل: 54
نقطة التقاطع مع المحور الصادي: (0,-5)
خطوة 4
خطوة 4.1
اكتب بصيغة y=mx+b.
خطوة 4.1.1
أعِد ترتيب -5 و5x4.
y=5x4-5
خطوة 4.1.2
أعِد ترتيب الحدود.
y=54x-5
y=54x-5
خطوة 4.2
أنشئ جدولاً بقيمتَي x وy.
xy0-540
xy0-540
خطوة 5
مثّل الخط بيانيًا باستخدام الميل ونقطة التقاطع مع المحور الصادي أو النقاط.
الميل: 54
نقطة التقاطع مع المحور الصادي: (0,-5)
xy0-540
خطوة 6
