الجبر الأمثلة

Resolver para x لوغاريتم 8=3 للأساس x
خطوة 1
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اطرح من كلا المتعادلين.
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 2.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
انقُل إلى يسار .
خطوة 2.2.3.2
ارفع إلى القوة .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.5.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.5.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.3.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.3.1.1
ارفع إلى القوة .
خطوة 2.5.2.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.3.1.2.1
اضرب في .
خطوة 2.5.2.3.1.2.2
اضرب في .
خطوة 2.5.2.3.1.3
اطرح من .
خطوة 2.5.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.7
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.3.1.7.1
أخرِج العامل من .
خطوة 2.5.2.3.1.7.2
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.8
أخرِج الحدود من تحت الجذر.
خطوة 2.5.2.3.1.9
انقُل إلى يسار .
خطوة 2.5.2.3.2
اضرب في .
خطوة 2.5.2.3.3
بسّط .
خطوة 2.5.2.4
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.