إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
بسّط كل حد.
خطوة 2.2.1.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2
أعِد كتابة العبارة.
خطوة 2.2.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.3.1
بسّط كل حد.
خطوة 2.2.1.3.1.1
انقُل إلى يسار .
خطوة 2.2.1.3.1.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.3.1.3
اضرب في بجمع الأُسس.
خطوة 2.2.1.3.1.3.1
انقُل .
خطوة 2.2.1.3.1.3.2
اضرب في .
خطوة 2.2.1.3.1.4
اضرب في .
خطوة 2.2.1.3.1.5
اضرب في .
خطوة 2.2.1.3.2
أضف و.
خطوة 2.2.1.4
ألغِ العامل المشترك لـ .
خطوة 2.2.1.4.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.2.1.4.2
أخرِج العامل من .
خطوة 2.2.1.4.3
ألغِ العامل المشترك.
خطوة 2.2.1.4.4
أعِد كتابة العبارة.
خطوة 2.2.1.5
طبّق خاصية التوزيع.
خطوة 2.2.1.6
اضرب في .
خطوة 2.2.1.7
اضرب في .
خطوة 2.2.1.8
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.1.8.1
طبّق خاصية التوزيع.
خطوة 2.2.1.8.2
طبّق خاصية التوزيع.
خطوة 2.2.1.8.3
طبّق خاصية التوزيع.
خطوة 2.2.1.9
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.1.9.1
بسّط كل حد.
خطوة 2.2.1.9.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2.1.9.1.2
اضرب في بجمع الأُسس.
خطوة 2.2.1.9.1.2.1
انقُل .
خطوة 2.2.1.9.1.2.2
اضرب في .
خطوة 2.2.1.9.1.3
اضرب في .
خطوة 2.2.1.9.1.4
اضرب في .
خطوة 2.2.1.9.1.5
اضرب في .
خطوة 2.2.1.9.1.6
اضرب في .
خطوة 2.2.1.9.2
أضف و.
خطوة 2.2.2
بسّط بجمع الحدود.
خطوة 2.2.2.1
جمّع الحدود المتعاكسة في .
خطوة 2.2.2.1.1
أضف و.
خطوة 2.2.2.1.2
أضف و.
خطوة 2.2.2.2
اطرح من .
خطوة 2.2.2.3
اطرح من .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.3.1.1
طبّق خاصية التوزيع.
خطوة 2.3.1.2
طبّق خاصية التوزيع.
خطوة 2.3.1.3
طبّق خاصية التوزيع.
خطوة 2.3.2
بسّط الحدود.
خطوة 2.3.2.1
جمّع الحدود المتعاكسة في .
خطوة 2.3.2.1.1
أعِد ترتيب العوامل في الحدين و.
خطوة 2.3.2.1.2
اطرح من .
خطوة 2.3.2.1.3
أضف و.
خطوة 2.3.2.2
بسّط كل حد.
خطوة 2.3.2.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.2.2.2
اضرب في بجمع الأُسس.
خطوة 2.3.2.2.2.1
انقُل .
خطوة 2.3.2.2.2.2
اضرب في .
خطوة 2.3.2.2.3
اضرب في .
خطوة 2.3.2.2.4
اضرب في .
خطوة 2.3.2.3
اضرب في .
خطوة 3
خطوة 3.1
أخرِج العامل من .
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
أعِد كتابة بالصيغة .
خطوة 3.1.3
أخرِج العامل من .
خطوة 3.1.4
أخرِج العامل من .
خطوة 3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.4.2
أوجِد قيمة في .
خطوة 3.4.2.1
أضف إلى كلا المتعادلين.
خطوة 3.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.4.2.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2.2
بسّط الطرف الأيسر.
خطوة 3.4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.2.2.2.1.2
اقسِم على .
خطوة 3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4