إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
اطرح من .
خطوة 2
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
اقسِم على .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
انقُل السالب أمام الكسر.
خطوة 3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 4
خطوة 4.1
احسِب قيمة .
خطوة 5
خطوة 5.1
اقسِم كل حد في على .
خطوة 5.2
بسّط الطرف الأيسر.
خطوة 5.2.1
ألغِ العامل المشترك لـ .
خطوة 5.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.1.2
اقسِم على .
خطوة 5.3
بسّط الطرف الأيمن.
خطوة 5.3.1
اقسِم على .
خطوة 6
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 7
خطوة 7.1
اطرح من .
خطوة 7.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 7.3
اقسِم كل حد في على وبسّط.
خطوة 7.3.1
اقسِم كل حد في على .
خطوة 7.3.2
بسّط الطرف الأيسر.
خطوة 7.3.2.1
ألغِ العامل المشترك لـ .
خطوة 7.3.2.1.1
ألغِ العامل المشترك.
خطوة 7.3.2.1.2
اقسِم على .
خطوة 7.3.3
بسّط الطرف الأيمن.
خطوة 7.3.3.1
اقسِم على .
خطوة 8
خطوة 8.1
يمكن حساب فترة الدالة باستخدام .
خطوة 8.2
استبدِل بـ في القاعدة للفترة.
خطوة 8.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 8.4
احذِف العامل المشترك لـ و.
خطوة 8.4.1
أخرِج العامل من .
خطوة 8.4.2
ألغِ العوامل المشتركة.
خطوة 8.4.2.1
أخرِج العامل من .
خطوة 8.4.2.2
ألغِ العامل المشترك.
خطوة 8.4.2.3
أعِد كتابة العبارة.
خطوة 9
خطوة 9.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 9.2
اطرح من .
خطوة 9.3
اسرِد الزوايا الجديدة.
خطوة 10
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح