الجبر الأمثلة

Resolver el Sistema de Equations 4x^2+y=3 -x-y=11
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2
اضرب في .
خطوة 2.2.1.3
اضرب في .
خطوة 3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
اطرح من .
خطوة 3.3
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 3.3.2
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
أعِد ترتيب الحدود.
خطوة 3.3.2.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.2.1
أخرِج العامل من .
خطوة 3.3.2.2.2
أعِد كتابة في صورة زائد
خطوة 3.3.2.2.3
طبّق خاصية التوزيع.
خطوة 3.3.2.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.3.1
جمّع أول حدين وآخر حدين.
خطوة 3.3.2.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.2.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1
اطرح من كلا المتعادلين.
خطوة 3.5.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.1
اقسِم كل حد في على .
خطوة 3.5.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.5.2.2.2.1.2
اقسِم على .
خطوة 3.5.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
استخدِم قاعدة القوة لتوزيع الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1.1
طبّق قاعدة الضرب على .
خطوة 4.2.1.1.1.2
طبّق قاعدة الضرب على .
خطوة 4.2.1.1.2
ارفع إلى القوة .
خطوة 4.2.1.1.3
اضرب في .
خطوة 4.2.1.1.4
ارفع إلى القوة .
خطوة 4.2.1.1.5
ارفع إلى القوة .
خطوة 4.2.1.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.6.1
أخرِج العامل من .
خطوة 4.2.1.1.6.2
أخرِج العامل من .
خطوة 4.2.1.1.6.3
ألغِ العامل المشترك.
خطوة 4.2.1.1.6.4
أعِد كتابة العبارة.
خطوة 4.2.1.1.7
أعِد كتابة بالصيغة .
خطوة 4.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.1.3
اجمع و.
خطوة 4.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 4.2.1.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.5.1
اضرب في .
خطوة 4.2.1.5.2
اطرح من .
خطوة 4.2.1.6
انقُل السالب أمام الكسر.
خطوة 5
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.1
ارفع إلى القوة .
خطوة 5.2.1.1.2
اضرب في .
خطوة 5.2.1.2
اطرح من .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8