الجبر الأمثلة

الرسم البياني y<=x 5 y<=2x+3
خطوة 1
مثّل بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.1.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 1.1.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 1.2
ارسِم خطًا متصلاً، ثم ظلّل المنطقة الواقعة أسفل خط الحدود بما أن أصغر من .
خطوة 2
مثّل بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 2.1.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 2.1.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 2.2
أوجِد نقطتين واقعتين على الخط.
خطوة 2.3
مثّل الخط بيانيًا باستخدام الميل ونقطة التقاطع مع المحور الصادي ونقطتين.
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 3
مثّل بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 3.1.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 3.1.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 3.2
ارسِم خطًا متصلاً، ثم ظلّل المنطقة الواقعة أسفل خط الحدود بما أن أصغر من .
خطوة 4
عيّن النقاط على كل رسم بياني على نفس نظام الإحداثيات.
خطوة 5