إدخال مسألة...
الجبر الأمثلة
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
خطوة 2.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.2
أوجِد قيمة في .
خطوة 2.2.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2.2.2
بسّط .
خطوة 2.2.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.2.2.2.3
زائد أو ناقص يساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
خطوة 2.3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2.2
أوجِد قيمة .
خطوة 2.3.2.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.3.2.2.2.1
اقسِم كل حد في على .
خطوة 2.3.2.2.2.2
بسّط الطرف الأيسر.
خطوة 2.3.2.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.2.2.2.1.2
اقسِم على .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
اطرح من كلا المتعادلين.
خطوة 2.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.4.2.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2.2
بسّط الطرف الأيسر.
خطوة 2.4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.2.1.2
اقسِم على .
خطوة 2.4.2.2.3
بسّط الطرف الأيمن.
خطوة 2.4.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة. تعدد الجذر هو عدد المرات التي يظهر فيها الجذر.
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
خطوة 3