إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
بسّط كل حد.
خطوة 1.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.2.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2.2
طبّق خاصية التوزيع.
خطوة 1.2.2.3
طبّق خاصية التوزيع.
خطوة 1.2.3
بسّط ووحّد الحدود المتشابهة.
خطوة 1.2.3.1
بسّط كل حد.
خطوة 1.2.3.1.1
اضرب في بجمع الأُسس.
خطوة 1.2.3.1.1.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.3.1.1.2
أضف و.
خطوة 1.2.3.1.2
انقُل إلى يسار .
خطوة 1.2.3.1.3
اضرب في .
خطوة 1.2.3.2
اطرح من .
خطوة 1.3
اطرح من .
خطوة 1.4
أضف و.
خطوة 2
عوّض بـ في المعادلة. سيسهّل ذلك استخدام الصيغة التربيعية.
خطوة 3
أضف إلى كلا المتعادلين.
خطوة 4
أضف و.
خطوة 5
خطوة 5.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 5.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 7
خطوة 7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.2
أضف إلى كلا المتعادلين.
خطوة 8
خطوة 8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 8.2
أضف إلى كلا المتعادلين.
خطوة 9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 10
عوّض بالقيمة الحقيقية لـ مرة أخرى في المعادلة المحلولة.
خطوة 11
أوجِد قيمة في المعادلة الأولى.
خطوة 12
خطوة 12.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 12.2
بسّط .
خطوة 12.2.1
أعِد كتابة بالصيغة .
خطوة 12.2.1.1
أخرِج العامل من .
خطوة 12.2.1.2
أعِد كتابة بالصيغة .
خطوة 12.2.2
أخرِج الحدود من تحت الجذر.
خطوة 12.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 12.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 12.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 12.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 13
أوجِد قيمة في المعادلة الثانية.
خطوة 14
خطوة 14.1
احذِف الأقواس.
خطوة 14.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 14.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 14.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 14.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 14.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 15
حل هو .
خطوة 16
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: