إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 1.2
أوجِد حل المعادلة.
خطوة 1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.3.2
أوجِد قيمة في .
خطوة 1.2.3.2.1
اطرح من كلا المتعادلين.
خطوة 1.2.3.2.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.3.2.2.1
اقسِم كل حد في على .
خطوة 1.2.3.2.2.2
بسّط الطرف الأيسر.
خطوة 1.2.3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.2.2.1.2
اقسِم على .
خطوة 1.2.3.2.2.3
بسّط الطرف الأيمن.
خطوة 1.2.3.2.2.3.1
اقسِم على .
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أوجِد قيمة في .
خطوة 1.2.4.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2.4.2.2
بسّط .
خطوة 1.2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 1.2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 1.2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 2
خطوة 2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2
أوجِد حل المعادلة.
خطوة 2.2.1
احذِف الأقواس.
خطوة 2.2.2
احذِف الأقواس.
خطوة 2.2.3
بسّط .
خطوة 2.2.3.1
اضرب في .
خطوة 2.2.3.2
أضف و.
خطوة 2.2.3.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.2.3.4
اضرب في .
خطوة 2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 3
اسرِد التقاطعات.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 4