إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.1.1
جمّع أول حدين وآخر حدين.
خطوة 1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.3
أعِد كتابة بالصيغة .
خطوة 1.4
أعِد كتابة بالصيغة .
خطوة 1.5
حلّل إلى عوامل.
خطوة 1.5.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.5.2
احذِف الأقواس غير الضرورية.
خطوة 1.6
اجمع الأُسس.
خطوة 1.6.1
ارفع إلى القوة .
خطوة 1.6.2
ارفع إلى القوة .
خطوة 1.6.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.6.4
أضف و.
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.2
أوجِد قيمة .
خطوة 3.2.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.2.2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.2.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.2.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.2.3
بسّط .
خطوة 4.2.3.1
أعِد كتابة بالصيغة .
خطوة 4.2.3.2
أعِد كتابة بالصيغة .
خطوة 4.2.3.3
أعِد كتابة بالصيغة .
خطوة 4.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6