إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 1.2
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 1.2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 1.2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 1.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2
خطوة 2.1
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 2.1.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.1.2
بسّط الطرف الأيسر.
خطوة 2.1.2.1
أعِد كتابة بالصيغة .
خطوة 2.1.2.1.1
استخدِم لكتابة في صورة .
خطوة 2.1.2.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.1.2.1.3
اجمع و.
خطوة 2.1.2.1.4
ألغِ العامل المشترك لـ .
خطوة 2.1.2.1.4.1
ألغِ العامل المشترك.
خطوة 2.1.2.1.4.2
أعِد كتابة العبارة.
خطوة 2.1.2.1.5
بسّط.
خطوة 2.2
أوجِد قيمة في .
خطوة 2.2.1
اطرح من كلا المتعادلين.
خطوة 2.2.2
اطرح من .
خطوة 2.2.3
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.3.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.2.3.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 2.2.3.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2.3.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.5.2
أضف إلى كلا المتعادلين.
خطوة 2.2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2.6.2
اطرح من كلا المتعادلين.
خطوة 2.2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 2.3
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 2.3.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.3.2
بسّط الطرف الأيمن.
خطوة 2.3.2.1
بسّط .
خطوة 2.3.2.1.1
اضرب في .
خطوة 2.3.2.1.2
اطرح من .
خطوة 2.3.2.1.3
أعِد كتابة بالصيغة .
خطوة 2.3.2.1.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 2.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.4.2
بسّط الطرف الأيمن.
خطوة 2.4.2.1
بسّط .
خطوة 2.4.2.1.1
اضرب في .
خطوة 2.4.2.1.2
أضف و.
خطوة 2.4.2.1.3
أعِد كتابة بالصيغة .
خطوة 2.4.2.1.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3
خطوة 3.1
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.1.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.1.2
بسّط الطرف الأيسر.
خطوة 3.1.2.1
بسّط كل حد.
خطوة 3.1.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.1.2.1.2
ارفع إلى القوة .
خطوة 3.1.2.1.3
اضرب في .
خطوة 3.1.2.1.4
أعِد كتابة بالصيغة .
خطوة 3.1.2.1.4.1
استخدِم لكتابة في صورة .
خطوة 3.1.2.1.4.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.1.2.1.4.3
اجمع و.
خطوة 3.1.2.1.4.4
ألغِ العامل المشترك لـ .
خطوة 3.1.2.1.4.4.1
ألغِ العامل المشترك.
خطوة 3.1.2.1.4.4.2
أعِد كتابة العبارة.
خطوة 3.1.2.1.4.5
بسّط.
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
اطرح من .
خطوة 3.2.3
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.2.3.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 3.2.3.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 3.2.3.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.2.3.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.2.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.5.2
أضف إلى كلا المتعادلين.
خطوة 3.2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2.6.2
اطرح من كلا المتعادلين.
خطوة 3.2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3.3
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.3.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.3.2
بسّط الطرف الأيمن.
خطوة 3.3.2.1
بسّط .
خطوة 3.3.2.1.1
اضرب في .
خطوة 3.3.2.1.2
اطرح من .
خطوة 3.3.2.1.3
أعِد كتابة بالصيغة .
خطوة 3.3.2.1.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.3.2.1.5
اضرب في .
خطوة 3.4
استبدِل كافة حالات حدوث بـ في كل معادلة.
خطوة 3.4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.4.2
بسّط الطرف الأيمن.
خطوة 3.4.2.1
بسّط .
خطوة 3.4.2.1.1
اضرب في .
خطوة 3.4.2.1.2
أضف و.
خطوة 3.4.2.1.3
أعِد كتابة بالصيغة .
خطوة 3.4.2.1.4
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.4.2.1.5
اضرب في .
خطوة 4
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 6