إدخال مسألة...
الجبر الأمثلة
خطوة 1
يمكن إيجاد الدالة بحساب قيمة التكامل غير المحدد للمشتق .
خطوة 2
خطوة 2.1
افترض أن . أوجِد .
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.3
احسِب قيمة .
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.3
اضرب في .
خطوة 2.1.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.1.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.4.2
أضف و.
خطوة 2.2
أعِد كتابة المسألة باستخدام و.
خطوة 3
اجمع و.
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 6
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
بسّط.
خطوة 6.2.1
اضرب في .
خطوة 6.2.2
اضرب في .
خطوة 7
استبدِل كافة حالات حدوث بـ .
خطوة 8
الدالة إذا كانت مشتقة من تكامل مشتق الدالة. ويُعد هذا صحيحًا وفقًا للنظرية الأساسية للتفاضل والتكامل.