إدخال مسألة...
الجبر الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
انقُل السالب أمام الكسر.
خطوة 2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.4
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 2.4.1
اضرب في .
خطوة 2.4.2
اضرب في .
خطوة 2.4.3
أعِد ترتيب عوامل .
خطوة 2.4.4
أعِد ترتيب عوامل .
خطوة 2.5
اجمع البسوط على القاسم المشترك.
خطوة 2.6
بسّط بَسْط الكسر.
خطوة 2.6.1
أخرِج العامل من .
خطوة 2.6.1.1
أعِد ترتيب و.
خطوة 2.6.1.2
أخرِج العامل من .
خطوة 2.6.1.3
أخرِج العامل من .
خطوة 2.6.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.6.2.1
طبّق خاصية التوزيع.
خطوة 2.6.2.2
طبّق خاصية التوزيع.
خطوة 2.6.2.3
طبّق خاصية التوزيع.
خطوة 2.6.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.6.3.1
بسّط كل حد.
خطوة 2.6.3.1.1
اضرب في .
خطوة 2.6.3.1.2
انقُل إلى يسار .
خطوة 2.6.3.1.3
اضرب في .
خطوة 2.6.3.2
أضف و.
خطوة 2.6.4
أضف و.
خطوة 2.6.5
أضف و.
خطوة 2.7
انقُل السالب أمام الكسر.
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
خطوة 4.1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2
أوجِد قيمة في .
خطوة 4.2.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.2.1.2
اقسِم على .
خطوة 4.2.2.2.3
بسّط الطرف الأيمن.
خطوة 4.2.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 4.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.2
اطرح من كلا المتعادلين.
خطوة 4.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.4.2
أضف إلى كلا المتعادلين.
خطوة 4.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 6