الجبر الأمثلة

تقييم 1/2+1/(2x)=(x^2-7x+10)/(4x)
خطوة 1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.5
لها العاملان و.
خطوة 2.6
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.8
اضرب في .
خطوة 2.9
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.10
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.11
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
أخرِج العامل من .
خطوة 3.2.2.2
أخرِج العامل من .
خطوة 3.2.2.3
ألغِ العامل المشترك.
خطوة 3.2.2.4
أعِد كتابة العبارة.
خطوة 3.2.3
اجمع و.
خطوة 3.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
ألغِ العامل المشترك.
خطوة 3.2.4.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.2.1
أخرِج العامل من .
خطوة 3.3.1.2.2
ألغِ العامل المشترك.
خطوة 3.3.1.2.3
أعِد كتابة العبارة.
خطوة 3.3.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.3.1
ألغِ العامل المشترك.
خطوة 3.3.1.3.2
أعِد كتابة العبارة.
خطوة 3.3.1.4
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.4.1
طبّق خاصية التوزيع.
خطوة 3.3.1.4.2
طبّق خاصية التوزيع.
خطوة 3.3.1.4.3
طبّق خاصية التوزيع.
خطوة 3.3.1.5
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.5.1.1
اضرب في .
خطوة 3.3.1.5.1.2
انقُل إلى يسار .
خطوة 3.3.1.5.1.3
اضرب في .
خطوة 3.3.1.5.2
اطرح من .
خطوة 3.3.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.6.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.1.6.2
أخرِج العامل من .
خطوة 3.3.1.6.3
ألغِ العامل المشترك.
خطوة 3.3.1.6.4
أعِد كتابة العبارة.
خطوة 3.3.1.7
اضرب في .
خطوة 3.3.2
اطرح من .
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
اطرح من كلا المتعادلين.
خطوة 4.3
اطرح من .
خطوة 4.4
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.4.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
أضف إلى كلا المتعادلين.
خطوة 4.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.7.2
أضف إلى كلا المتعادلين.
خطوة 4.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.