إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على .
خطوة 1.2
بسّط الطرف الأيسر.
خطوة 1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.1.2
اقسِم على .
خطوة 1.3
بسّط الطرف الأيمن.
خطوة 1.3.1
اجمع البسوط على القاسم المشترك.
خطوة 1.3.2
بسّط القاسم.
خطوة 1.3.2.1
أعِد كتابة بالصيغة .
خطوة 1.3.2.2
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 1.3.3
ألغِ العامل المشترك لـ .
خطوة 1.3.3.1
ألغِ العامل المشترك.
خطوة 1.3.3.2
أعِد كتابة العبارة.
خطوة 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3
خطوة 3.1
أعِد كتابة بالصيغة .
خطوة 3.2
أي جذر لـ هو .
خطوة 3.3
اضرب في .
خطوة 3.4
جمّع وبسّط القاسم.
خطوة 3.4.1
اضرب في .
خطوة 3.4.2
ارفع إلى القوة .
خطوة 3.4.3
ارفع إلى القوة .
خطوة 3.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.5
أضف و.
خطوة 3.4.6
أعِد كتابة بالصيغة .
خطوة 3.4.6.1
استخدِم لكتابة في صورة .
خطوة 3.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.6.3
اجمع و.
خطوة 3.4.6.4
ألغِ العامل المشترك لـ .
خطوة 3.4.6.4.1
ألغِ العامل المشترك.
خطوة 3.4.6.4.2
أعِد كتابة العبارة.
خطوة 3.4.6.5
بسّط.
خطوة 4
خطوة 4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 6
أضِف إلى كلا طرفي المتباينة.
خطوة 7
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 8
أضف إلى كلا المتعادلين.
خطوة 9
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 10
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 11
حدد النطاق والمدى.
النطاق:
المدى:
خطوة 12