الجبر الأمثلة

أوجد القيم المستثناه ((x+3)/(x^2+8x+15))÷((x^2-25)/(x-5))
خطوة 1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
اطرح من كلا المتعادلين.
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
اطرح من كلا المتعادلين.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
أضف إلى كلا المتعادلين.
خطوة 5
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 6.2
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
أضف إلى كلا المتعادلين.
خطوة 6.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.2.3.1
أعِد كتابة بالصيغة .
خطوة 6.2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6.3
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 7
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 8