إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
ارفع إلى القوة .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.1.4
أخرِج العامل من .
خطوة 1.2
أخرِج العامل من .
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
ارفع إلى القوة .
خطوة 1.2.3
أخرِج العامل من .
خطوة 1.2.4
أخرِج العامل من .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
بما أن تحتوي على أرقام ومتغيرات على حدٍّ سواء، فهناك أربع خطوات لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للأجزاء المتغيرة العددية والمتغيرة والمركبة. ثم اضربها جميعًا معًا.
تتمثل خطوات إيجاد المضاعف المشترك الأصغر لـ فيما يلي:
1. أوجِد المضاعف المشترك الأصغر للجزء الرقمي .
2. أوجِد المضاعف المشترك الأصغر للجزء المتغير .
3. أوجِد المضاعف المشترك الأصغر للجزء المتغير المركب .
4. اضرب كل مضاعف مشترك أصغر معًا.
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1.1
ألغِ العامل المشترك.
خطوة 3.3.1.1.2
أعِد كتابة العبارة.
خطوة 3.3.1.2
ألغِ العامل المشترك لـ .
خطوة 3.3.1.2.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.1.2.2
أخرِج العامل من .
خطوة 3.3.1.2.3
ألغِ العامل المشترك.
خطوة 3.3.1.2.4
أعِد كتابة العبارة.
خطوة 3.3.1.3
طبّق خاصية التوزيع.
خطوة 3.3.1.4
اضرب في .
خطوة 3.3.1.5
طبّق خاصية التوزيع.
خطوة 3.3.1.6
اضرب في بجمع الأُسس.
خطوة 3.3.1.6.1
انقُل .
خطوة 3.3.1.6.2
اضرب في .
خطوة 4
خطوة 4.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 4.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اطرح من .
خطوة 4.3
اطرح من كلا المتعادلين.
خطوة 4.4
اطرح من .
خطوة 4.5
حلّل المتعادل الأيسر إلى عوامل.
خطوة 4.5.1
أخرِج العامل من .
خطوة 4.5.1.1
أخرِج العامل من .
خطوة 4.5.1.2
أخرِج العامل من .
خطوة 4.5.1.3
أعِد كتابة بالصيغة .
خطوة 4.5.1.4
أخرِج العامل من .
خطوة 4.5.1.5
أخرِج العامل من .
خطوة 4.5.2
حلّل إلى عوامل.
خطوة 4.5.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 4.5.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.5.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.5.2.2
احذِف الأقواس غير الضرورية.
خطوة 4.6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.7.2
أضف إلى كلا المتعادلين.
خطوة 4.8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.8.2
أضف إلى كلا المتعادلين.
خطوة 4.9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.