الجبر الأمثلة

الرسم البياني 2y<-12x+4 y<-6x+4
خطوة 1
مثّل بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
اقسِم كل حد في على .
خطوة 1.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.2.1.1
ألغِ العامل المشترك.
خطوة 1.1.2.1.2
اقسِم على .
خطوة 1.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1.1
أخرِج العامل من .
خطوة 1.1.3.1.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.3.1.1.2.1
أخرِج العامل من .
خطوة 1.1.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 1.1.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 1.1.3.1.1.2.4
اقسِم على .
خطوة 1.1.3.1.2
اقسِم على .
خطوة 1.2
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.2.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 1.2.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 1.3
ارسِم خطًا متقطعًا، ثم ظلّل المنطقة الواقعة أسفل خط الحدود بما أن أصغر من .
خطوة 2
مثّل بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 2.1.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 2.1.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 2.2
ارسِم خطًا متقطعًا، ثم ظلّل المنطقة الواقعة أسفل خط الحدود بما أن أصغر من .
خطوة 3
عيّن النقاط على كل رسم بياني على نفس نظام الإحداثيات.
خطوة 4