الجبر الأمثلة

أوجد الجذور (الأصفار) f(t)=3t(t-3)(t+4)
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
اقسِم كل حد في على .
خطوة 2.1.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.1.1
ألغِ العامل المشترك.
خطوة 2.1.2.1.1.2
اقسِم على .
خطوة 2.1.2.1.2
طبّق خاصية التوزيع.
خطوة 2.1.2.1.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1.3.1
اضرب في .
خطوة 2.1.2.1.3.2
انقُل إلى يسار .
خطوة 2.1.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.2.1
طبّق خاصية التوزيع.
خطوة 2.1.2.2.2
طبّق خاصية التوزيع.
خطوة 2.1.2.2.3
طبّق خاصية التوزيع.
خطوة 2.1.2.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.1.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.1.1.1
ارفع إلى القوة .
خطوة 2.1.2.3.1.1.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.2.3.1.1.2
أضف و.
خطوة 2.1.2.3.1.2
انقُل إلى يسار .
خطوة 2.1.2.3.1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.3.1.3.1
انقُل .
خطوة 2.1.2.3.1.3.2
اضرب في .
خطوة 2.1.2.3.1.4
اضرب في .
خطوة 2.1.2.3.2
اطرح من .
خطوة 2.1.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
اقسِم على .
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أضف إلى كلا المتعادلين.
خطوة 2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.6.2
اطرح من كلا المتعادلين.
خطوة 2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3