الجبر الأمثلة

أوجد الجذور (الأصفار) x^5+2x^3+x=0
خطوة 1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
ارفع إلى القوة .
خطوة 1.1.4
أخرِج العامل من .
خطوة 1.1.5
أخرِج العامل من .
خطوة 1.1.6
أخرِج العامل من .
خطوة 1.2
أعِد كتابة بالصيغة .
خطوة 1.3
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.4
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد كتابة بالصيغة .
خطوة 1.4.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.4.3
أعِد كتابة متعدد الحدود.
خطوة 1.4.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 1.5
استبدِل كافة حالات حدوث بـ .
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2.2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.2.2.3
أعِد كتابة بالصيغة .
خطوة 4.2.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.2.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 6