إدخال مسألة...
الجبر الأمثلة
خطوة 1
أنشئ عبارات متكافئة في المعادلة بحيث تكون جميعها ذات أساسات متساوية.
خطوة 2
بما أن العددين متساويان في الأساس، إذن تتساوى العبارتان فقط إذا تساوى الأُسان أيضًا.
خطوة 3
خطوة 3.1
بسّط .
خطوة 3.1.1
طبّق خاصية التوزيع.
خطوة 3.1.2
اضرب.
خطوة 3.1.2.1
اضرب في .
خطوة 3.1.2.2
اضرب في .
خطوة 3.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2
أضف و.
خطوة 3.3
اطرح من كلا المتعادلين.
خطوة 3.4
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.4.1
أخرِج العامل من .
خطوة 3.4.1.1
أخرِج العامل من .
خطوة 3.4.1.2
أخرِج العامل من .
خطوة 3.4.1.3
أخرِج العامل من .
خطوة 3.4.1.4
أخرِج العامل من .
خطوة 3.4.1.5
أخرِج العامل من .
خطوة 3.4.2
حلّل إلى عوامل.
خطوة 3.4.2.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 3.4.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.4.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.4.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أضف إلى كلا المتعادلين.
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
اطرح من كلا المتعادلين.
خطوة 3.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.