الجبر الأمثلة

Resolver para x 1/(2x)+2/(6x)=1+2/(7x)
خطوة 1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أخرِج العامل من .
خطوة 1.2
أخرِج العامل من .
خطوة 1.3
ألغِ العامل المشترك.
خطوة 1.4
أعِد كتابة العبارة.
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
بما أن تحتوي على أعداد ومتغيرات على حدٍّ سواء، فهناك خطوتان لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للجزء العددي ثم أوجِد المضاعف المشترك الأصغر للجزء المتغير.
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.5
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.6
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.7
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.9
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.9.1
اضرب في .
خطوة 2.9.2
اضرب في .
خطوة 2.10
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.11
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.12
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.2.1
أخرِج العامل من .
خطوة 3.2.1.2.2
أخرِج العامل من .
خطوة 3.2.1.2.3
ألغِ العامل المشترك.
خطوة 3.2.1.2.4
أعِد كتابة العبارة.
خطوة 3.2.1.3
اجمع و.
خطوة 3.2.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.1
ألغِ العامل المشترك.
خطوة 3.2.1.4.2
أعِد كتابة العبارة.
خطوة 3.2.1.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.6.1
أخرِج العامل من .
خطوة 3.2.1.6.2
أخرِج العامل من .
خطوة 3.2.1.6.3
ألغِ العامل المشترك.
خطوة 3.2.1.6.4
أعِد كتابة العبارة.
خطوة 3.2.1.7
اجمع و.
خطوة 3.2.1.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.8.1
ألغِ العامل المشترك.
خطوة 3.2.1.8.2
أعِد كتابة العبارة.
خطوة 3.2.2
أضف و.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
اضرب في .
خطوة 3.3.1.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.3.1
أخرِج العامل من .
خطوة 3.3.1.3.2
أخرِج العامل من .
خطوة 3.3.1.3.3
ألغِ العامل المشترك.
خطوة 3.3.1.3.4
أعِد كتابة العبارة.
خطوة 3.3.1.4
اجمع و.
خطوة 3.3.1.5
اضرب في .
خطوة 3.3.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.6.1
ألغِ العامل المشترك.
خطوة 3.3.1.6.2
أعِد كتابة العبارة.
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اطرح من .
خطوة 4.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: