الجبر الأمثلة

أوجد محور التناظر x=1/2y^2+2y+11
خطوة 1
أعِد كتابة المعادلة بصيغة الرأس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
اجمع و.
خطوة 1.2
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.2.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.2.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.2.1.2
أعِد كتابة العبارة.
خطوة 1.2.3.2.2
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.2.3.2.3
اضرب في .
خطوة 1.2.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.2.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.2.1.1
ارفع إلى القوة .
خطوة 1.2.4.2.1.2
اجمع و.
خطوة 1.2.4.2.1.3
اقسِم على .
خطوة 1.2.4.2.1.4
اقسِم على .
خطوة 1.2.4.2.1.5
اضرب في .
خطوة 1.2.4.2.2
اطرح من .
خطوة 1.2.5
عوّض بقيم و و في شكل الرأس .
خطوة 1.3
عيّن قيمة لتصبح مساوية للطرف الأيمن الجديد.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
بما أن قيمة موجبة، إذن القطع المكافئ مفتوح على اليمين.
مفتوح على اليمين
خطوة 4
أوجِد الرأس .
خطوة 5
أوجِد ، المسافة من الرأس إلى البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمة في القاعدة.
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
اقسِم على .
خطوة 6
أوجِد البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
يمكن إيجاد بؤرة القطع المكافئ بجمع مع الإحداثي السيني إذا كان القطع المكافئ مفتوحًا على اليسار أو على اليمين.
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7
أوجِد محور التناظر بإيجاد الخط الذي يمر عبر الرأس والبؤرة.
خطوة 8