الجبر الأمثلة

Resolver para x x- الجذر التربيعي لـ 169-x^2=17
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 3
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
استخدِم لكتابة في صورة .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
طبّق قاعدة الضرب على .
خطوة 3.2.1.2
ارفع إلى القوة .
خطوة 3.2.1.3
اضرب في .
خطوة 3.2.1.4
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.2.1.4.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.2.1
ألغِ العامل المشترك.
خطوة 3.2.1.4.2.2
أعِد كتابة العبارة.
خطوة 3.2.1.5
بسّط.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أعِد كتابة بالصيغة .
خطوة 3.3.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.2.1
طبّق خاصية التوزيع.
خطوة 3.3.1.2.2
طبّق خاصية التوزيع.
خطوة 3.3.1.2.3
طبّق خاصية التوزيع.
خطوة 3.3.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.3.1.1
اضرب في .
خطوة 3.3.1.3.1.2
اضرب في .
خطوة 3.3.1.3.1.3
اضرب في .
خطوة 3.3.1.3.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.1.3.1.5
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.3.1.5.1
انقُل .
خطوة 3.3.1.3.1.5.2
اضرب في .
خطوة 3.3.1.3.1.6
اضرب في .
خطوة 3.3.1.3.1.7
اضرب في .
خطوة 3.3.1.3.2
اطرح من .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 4.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
أضف و.
خطوة 4.3
اطرح من كلا المتعادلين.
خطوة 4.4
اطرح من .
خطوة 4.5
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1.1
أخرِج العامل من .
خطوة 4.5.1.2
أخرِج العامل من .
خطوة 4.5.1.3
أخرِج العامل من .
خطوة 4.5.1.4
أخرِج العامل من .
خطوة 4.5.1.5
أخرِج العامل من .
خطوة 4.5.2
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 4.5.3
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.5.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.5.4
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 4.5.4.1
استبدِل كافة حالات حدوث بـ .
خطوة 4.5.4.2
احذِف الأقواس غير الضرورية.
خطوة 4.6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.7.2
أضف إلى كلا المتعادلين.
خطوة 4.8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.8.2
أضف إلى كلا المتعادلين.
خطوة 4.9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.