الجبر الأمثلة

أوجد التقاطعات مع x و y f(x)=-x(x-1)(x+2)^2
خطوة 1
أوجِد نقاط التقاطع مع المحور السيني.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 1.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أضف إلى كلا المتعادلين.
خطوة 1.2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.5.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.5.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.5.2.2
اطرح من كلا المتعادلين.
خطوة 1.2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 2
أوجِد نقاط التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
احذِف الأقواس.
خطوة 2.2.2
احذِف الأقواس.
خطوة 2.2.3
احذِف الأقواس.
خطوة 2.2.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
اطرح من .
خطوة 2.2.4.2
اضرب في .
خطوة 2.2.4.3
أضف و.
خطوة 2.2.4.4
ارفع إلى القوة .
خطوة 2.2.4.5
اضرب في .
خطوة 2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 3
اسرِد التقاطعات.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 4