ما قبل التفاضل والتكامل الأمثلة

f(θ)=4sin(3θ)
خطوة 1
استخدِم الصيغة asin(bx-c)+d لإيجاد المتغيرات المُستخدمة لإيجاد السعة والفترة وإزاحة الطور والتحريك العمودي.
a=4
b=3
c=0
d=0
خطوة 2
أوجِد السعة |a|.
السعة: 4
خطوة 3
أوجِد فترة 4sin(3x).
انقر لعرض المزيد من الخطوات...
خطوة 3.1
يمكن حساب فترة الدالة باستخدام 2π|b|.
2π|b|
خطوة 3.2
استبدِل b بـ 3 في القاعدة للفترة.
2π|3|
خطوة 3.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين 0 و3 تساوي 3.
2π3
2π3
خطوة 4
أوجِد إزاحة الطور باستخدام القاعدة cb.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
يمكن حساب إزاحة الطور للدالة من cb.
إزاحة الطور: cb
خطوة 4.2
استبدِل قيم c وb في المعادلة لإزاحة الطور.
إزاحة الطور: 03
خطوة 4.3
اقسِم 0 على 3.
إزاحة الطور: 0
إزاحة الطور: 0
خطوة 5
اسرِد خصائص الدالة المثلثية.
السعة: 4
الفترة: 2π3
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
خطوة 6
حدد بضع نقاط لتمثيلها بيانيًا.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أوجِد النقطة في x=0.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
استبدِل المتغير x بـ 0 في العبارة.
f(0)=4sin(3(0))
خطوة 6.1.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.2.1
اضرب 3 في 0.
f(0)=4sin(0)
خطوة 6.1.2.2
القيمة الدقيقة لـ sin(0) هي 0.
f(0)=40
خطوة 6.1.2.3
اضرب 4 في 0.
f(0)=0
خطوة 6.1.2.4
الإجابة النهائية هي 0.
0
0
0
خطوة 6.2
أوجِد النقطة في x=π6.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
استبدِل المتغير x بـ π6 في العبارة.
f(π6)=4sin(3(π6))
خطوة 6.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1
ألغِ العامل المشترك لـ 3.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.2.1.1
أخرِج العامل 3 من 6.
f(π6)=4sin(3(π3(2)))
خطوة 6.2.2.1.2
ألغِ العامل المشترك.
f(π6)=4sin(3(π32))
خطوة 6.2.2.1.3
أعِد كتابة العبارة.
f(π6)=4sin(π2)
f(π6)=4sin(π2)
خطوة 6.2.2.2
القيمة الدقيقة لـ sin(π2) هي 1.
f(π6)=41
خطوة 6.2.2.3
اضرب 4 في 1.
f(π6)=4
خطوة 6.2.2.4
الإجابة النهائية هي 4.
4
4
4
خطوة 6.3
أوجِد النقطة في x=π3.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
استبدِل المتغير x بـ π3 في العبارة.
f(π3)=4sin(3(π3))
خطوة 6.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
ألغِ العامل المشترك لـ 3.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1.1
ألغِ العامل المشترك.
f(π3)=4sin(3(π3))
خطوة 6.3.2.1.2
أعِد كتابة العبارة.
f(π3)=4sin(π)
f(π3)=4sin(π)
خطوة 6.3.2.2
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
f(π3)=4sin(0)
خطوة 6.3.2.3
القيمة الدقيقة لـ sin(0) هي 0.
f(π3)=40
خطوة 6.3.2.4
اضرب 4 في 0.
f(π3)=0
خطوة 6.3.2.5
الإجابة النهائية هي 0.
0
0
0
خطوة 6.4
أوجِد النقطة في x=π2.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.1
استبدِل المتغير x بـ π2 في العبارة.
f(π2)=4sin(3(π2))
خطوة 6.4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.1
اجمع 3 وπ2.
f(π2)=4sin(3π2)
خطوة 6.4.2.2
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن الجيب سالب في الربع الرابع.
f(π2)=4(-sin(π2))
خطوة 6.4.2.3
القيمة الدقيقة لـ sin(π2) هي 1.
f(π2)=4(-11)
خطوة 6.4.2.4
اضرب 4(-11).
انقر لعرض المزيد من الخطوات...
خطوة 6.4.2.4.1
اضرب -1 في 1.
f(π2)=4-1
خطوة 6.4.2.4.2
اضرب 4 في -1.
f(π2)=-4
f(π2)=-4
خطوة 6.4.2.5
الإجابة النهائية هي -4.
-4
-4
-4
خطوة 6.5
أوجِد النقطة في x=2π3.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
استبدِل المتغير x بـ 2π3 في العبارة.
f(2π3)=4sin(3(2π3))
خطوة 6.5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
ألغِ العامل المشترك لـ 3.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1.1
ألغِ العامل المشترك.
f(2π3)=4sin(3(2π3))
خطوة 6.5.2.1.2
أعِد كتابة العبارة.
f(2π3)=4sin(2π)
f(2π3)=4sin(2π)
خطوة 6.5.2.2
اطرح الدورات الكاملة البالغة 2π حتى تصبح الزاوية أكبر من أو تساوي 0 وأصغر من 2π.
f(2π3)=4sin(0)
خطوة 6.5.2.3
القيمة الدقيقة لـ sin(0) هي 0.
f(2π3)=40
خطوة 6.5.2.4
اضرب 4 في 0.
f(2π3)=0
خطوة 6.5.2.5
الإجابة النهائية هي 0.
0
0
0
خطوة 6.6
اسرِد النقاط في جدول.
xf(x)00π64π30π2-42π30
xf(x)00π64π30π2-42π30
خطوة 7
يمكن تمثيل الدالة المثلثية بيانيًا باستخدام السعة والفترة وإزاحة الطور والتحريك العمودي والنقاط.
السعة: 4
الفترة: 2π3
إزاحة الطور: لا يوجد
الإزاحة الرأسية: لا توجد
xf(x)00π64π30π2-42π30
خطوة 8
إدخال مسألتك
يتطلب Mathway استخدام JavaScript ومتصفح حديث.
 [x2  12  π  xdx ] 
AmazonPay