ما قبل التفاضل والتكامل الأمثلة
,
خطوة 1
خطوة 1.1
الميل يساوي التغيير في على التغيير في ، أو فرق الصادات على فرق السينات.
خطوة 1.2
التغيير في يساوي الفرق في الإحداثيات السينية (يُعرف أيضًا بفرق السينات)، أما التغيير في يساوي الفرق في الإحداثيات الصادية (يُعرف أيضًا بفرق الصادات).
خطوة 1.3
عوّض بقيمتَي و في المعادلة لإيجاد الميل.
خطوة 1.4
بسّط.
خطوة 1.4.1
بسّط بَسْط الكسر.
خطوة 1.4.1.1
اضرب في .
خطوة 1.4.1.2
اطرح من .
خطوة 1.4.2
بسّط القاسم.
خطوة 1.4.2.1
اضرب في .
خطوة 1.4.2.2
اطرح من .
خطوة 1.4.3
انقُل السالب أمام الكسر.
خطوة 2
استخدِم الميل ونقطة مُعطاة للتعويض بقيمتَي و في شكل ميل النقطة ، المشتق من معادلة الميل .
خطوة 3
بسّط المعادلة واتركها بِشكل ميل النقطة.
خطوة 4
خطوة 4.1
بسّط .
خطوة 4.1.1
أعِد الكتابة.
خطوة 4.1.2
بسّط بجمع الأصفار.
خطوة 4.1.3
طبّق خاصية التوزيع.
خطوة 4.1.4
اجمع و.
خطوة 4.1.5
اضرب .
خطوة 4.1.5.1
اضرب في .
خطوة 4.1.5.2
اجمع و.
خطوة 4.1.5.3
اضرب في .
خطوة 4.1.6
انقُل إلى يسار .
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.3
اجمع و.
خطوة 4.2.4
اجمع البسوط على القاسم المشترك.
خطوة 4.2.5
بسّط بَسْط الكسر.
خطوة 4.2.5.1
اضرب في .
خطوة 4.2.5.2
أضف و.
خطوة 5
أعِد ترتيب الحدود.
خطوة 6
احذِف الأقواس.
خطوة 7
اسرِد المعادلة بصيغ مختلفة.
صيغة تقاطع الميل:
شكل ميل النقطة:
خطوة 8