ما قبل التفاضل والتكامل الأمثلة
[330103020]⎡⎢⎣330103020⎤⎥⎦
خطوة 1
خطوة 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
خطوة 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
خطوة 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
خطوة 1.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|3003|∣∣∣3003∣∣∣
خطوة 1.1.4
Multiply element a31a31 by its cofactor.
0|3003|0∣∣∣3003∣∣∣
خطوة 1.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3013|∣∣∣3013∣∣∣
خطوة 1.1.6
Multiply element a32a32 by its cofactor.
-2|3013|−2∣∣∣3013∣∣∣
خطوة 1.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3310|∣∣∣3310∣∣∣
خطوة 1.1.8
Multiply element a33a33 by its cofactor.
0|3310|0∣∣∣3310∣∣∣
خطوة 1.1.9
Add the terms together.
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
خطوة 1.2
اضرب 00 في |3003|∣∣∣3003∣∣∣.
0-2|3013|+0|3310|0−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
خطوة 1.3
اضرب 00 في |3310|∣∣∣3310∣∣∣.
0-2|3013|+00−2∣∣∣3013∣∣∣+0
خطوة 1.4
احسِب قيمة |3013|∣∣∣3013∣∣∣.
خطوة 1.4.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0-2(3⋅3-1⋅0)+00−2(3⋅3−1⋅0)+0
خطوة 1.4.2
بسّط المحدد.
خطوة 1.4.2.1
اضرب 33 في 33.
0-2(9-1⋅0)+00−2(9−1⋅0)+0
خطوة 1.4.2.2
اطرح 00 من 99.
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
خطوة 1.5
بسّط المحدد.
خطوة 1.5.1
اضرب -2−2 في 99.
0-18+00−18+0
خطوة 1.5.2
اطرح 1818 من 00.
-18+0−18+0
خطوة 1.5.3
أضف -18−18 و00.
-18−18
-18−18
-18−18
خطوة 2
Since the determinant is non-zero, the inverse exists.
خطوة 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[330100103010020001]⎡⎢⎣330100103010020001⎤⎥⎦
خطوة 4
خطوة 4.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
خطوة 4.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[333303130303103010020001]⎡⎢
⎢⎣333303130303103010020001⎤⎥
⎥⎦
خطوة 4.1.2
بسّط R1R1.
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
خطوة 4.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
خطوة 4.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[11013001-10-13-00-131-00-0020001]⎡⎢
⎢⎣11013001−10−13−00−131−00−0020001⎤⎥
⎥⎦
خطوة 4.2.2
بسّط R2R2.
[11013000-13-1310020001]⎡⎢
⎢⎣11013000−13−1310020001⎤⎥
⎥⎦
[11013000-13-1310020001]⎡⎢
⎢⎣11013000−13−1310020001⎤⎥
⎥⎦
خطوة 4.3
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
خطوة 4.3.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[1101300-0--1-1⋅3--13-1⋅1-0020001]⎡⎢
⎢⎣1101300−0−−1−1⋅3−−13−1⋅1−0020001⎤⎥
⎥⎦
خطوة 4.3.2
بسّط R2R2.
[110130001-313-10020001]⎡⎢
⎢⎣110130001−313−10020001⎤⎥
⎥⎦
[110130001-313-10020001]⎡⎢
⎢⎣110130001−313−10020001⎤⎥
⎥⎦
خطوة 4.4
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
خطوة 4.4.1
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
[110130001-313-100-2⋅02-2⋅10-2⋅-30-2(13)0-2⋅-11-2⋅0]⎡⎢
⎢
⎢
⎢⎣110130001−313−100−2⋅02−2⋅10−2⋅−30−2(13)0−2⋅−11−2⋅0⎤⎥
⎥
⎥
⎥⎦
خطوة 4.4.2
بسّط R3R3.
[110130001-313-10006-2321]⎡⎢
⎢
⎢⎣110130001−313−10006−2321⎤⎥
⎥
⎥⎦
[110130001-313-10006-2321]
خطوة 4.5
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
خطوة 4.5.1
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
[110130001-313-10060666-2362616]
خطوة 4.5.2
بسّط R3.
[110130001-313-10001-191316]
[110130001-313-10001-191316]
خطوة 4.6
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
خطوة 4.6.1
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
[11013000+3⋅01+3⋅0-3+3⋅113+3(-19)-1+3(13)0+3(16)001-191316]
خطوة 4.6.2
بسّط R2.
[11013000100012001-191316]
[11013000100012001-191316]
خطوة 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
خطوة 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-013-00-00-120100012001-191316]
خطوة 4.7.2
بسّط R1.
[100130-120100012001-191316]
[100130-120100012001-191316]
[100130-120100012001-191316]
خطوة 5
The right half of the reduced row echelon form is the inverse.
[130-120012-191316]