ما قبل التفاضل والتكامل الأمثلة
,
خطوة 1
استخدِم لحساب معادلة الخط المستقيم، حيث يمثل الميل و تمثل نقطة التقاطع مع المحور الصادي.
لحساب معادلة الخط المستقيم، استخدِم الصيغة .
خطوة 2
الميل يساوي التغيير في على التغيير في ، أو فرق الصادات على فرق السينات.
خطوة 3
التغيير في يساوي الفرق في الإحداثيات السينية (يُعرف أيضًا بفرق السينات)، أما التغيير في يساوي الفرق في الإحداثيات الصادية (يُعرف أيضًا بفرق الصادات).
خطوة 4
عوّض بقيمتَي و في المعادلة لإيجاد الميل.
خطوة 5
خطوة 5.1
بسّط بَسْط الكسر.
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اطرح من .
خطوة 5.2
بسّط القاسم.
خطوة 5.2.1
اضرب في .
خطوة 5.2.2
أضف و.
خطوة 5.3
انقُل السالب أمام الكسر.
خطوة 6
خطوة 6.1
استخدِم قاعدة معادلة الخط المستقيم لإيجاد .
خطوة 6.2
عوّض بقيمة في المعادلة.
خطوة 6.3
عوّض بقيمة في المعادلة.
خطوة 6.4
عوّض بقيمة في المعادلة.
خطوة 6.5
أوجِد قيمة .
خطوة 6.5.1
أعِد كتابة المعادلة في صورة .
خطوة 6.5.2
اضرب .
خطوة 6.5.2.1
اضرب في .
خطوة 6.5.2.2
اجمع و.
خطوة 6.5.2.3
اضرب في .
خطوة 6.5.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 6.5.3.1
اطرح من كلا المتعادلين.
خطوة 6.5.3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.5.3.3
اجمع و.
خطوة 6.5.3.4
اجمع البسوط على القاسم المشترك.
خطوة 6.5.3.5
بسّط بَسْط الكسر.
خطوة 6.5.3.5.1
اضرب في .
خطوة 6.5.3.5.2
اطرح من .
خطوة 7
بما أن قيم (الميل) و (نقطة التقاطع مع المحور الصادي) أصبحت معروفة الآن، فعوّض بها في لإيجاد معادلة الخط المستقيم.
خطوة 8