الأمثلة

إيجاد أساس وبُعد الفضاء العمودي للمصفوفة
[14337-1-2112]
خطوة 1
أوجِد الصيغة الدرجية المختزلة صفيًا.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
احسب العملية الصفية R2=R2-3R1 لجعل الإدخال في 2,1 يساوي 0.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
احسب العملية الصفية R2=R2-3R1 لجعل الإدخال في 2,1 يساوي 0.
[1433-317-34-1-33-2112]
خطوة 1.1.2
بسّط R2.
[1430-5-10-2112]
[1430-5-10-2112]
خطوة 1.2
احسب العملية الصفية R3=R3+2R1 لجعل الإدخال في 3,1 يساوي 0.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
احسب العملية الصفية R3=R3+2R1 لجعل الإدخال في 3,1 يساوي 0.
[1430-5-10-2+211+2412+23]
خطوة 1.2.2
بسّط R3.
[1430-5-100918]
[1430-5-100918]
خطوة 1.3
اضرب كل عنصر من R2 في -15 لجعل الإدخال في 2,2 يساوي 1.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اضرب كل عنصر من R2 في -15 لجعل الإدخال في 2,2 يساوي 1.
[143-150-15-5-15-100918]
خطوة 1.3.2
بسّط R2.
[1430120918]
[1430120918]
خطوة 1.4
احسب العملية الصفية R3=R3-9R2 لجعل الإدخال في 3,2 يساوي 0.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
احسب العملية الصفية R3=R3-9R2 لجعل الإدخال في 3,2 يساوي 0.
[1430120-909-9118-92]
خطوة 1.4.2
بسّط R3.
[143012000]
[143012000]
خطوة 1.5
احسب العملية الصفية R1=R1-4R2 لجعل الإدخال في 1,2 يساوي 0.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
احسب العملية الصفية R1=R1-4R2 لجعل الإدخال في 1,2 يساوي 0.
[1-404-413-42012000]
خطوة 1.5.2
بسّط R1.
[10-5012000]
[10-5012000]
[10-5012000]
خطوة 2
المواضع المحورية هي المواقع التي بها 1 الرئيسية في كل صف. الأعمدة المحورية هي الأعمدة التي لها موضع محوري.
المواضع المحورية: a11 وa22
الأعمدة المحورية: 1 و2
خطوة 3
يتشكل أساس الفضاء العمودي لمصفوفة باستعراض الأعمدة المحورية المقابلة في المصفوفة الأصلية. وبُعد Col(A) هو عدد المتجهات في أساس Col(A).
أساس Col(A): {[13-2],[471]}
بُعد Col(A): 2
إدخال مسألتك
يتطلب Mathway استخدام JavaScript ومتصفح حديث.
 [x2  12  π  xdx ] 
AmazonPay