الأمثلة
,
خطوة 1
خطوة 2
خطوة 3
اكتب سلسلة المعادلات في شكل مصفوفة.
خطوة 4
خطوة 4.1
اضرب كل عنصر من في لجعل الإدخال في يساوي .
خطوة 4.1.1
اضرب كل عنصر من في لجعل الإدخال في يساوي .
خطوة 4.1.2
بسّط .
خطوة 4.2
احسب العملية الصفية لجعل الإدخال في يساوي .
خطوة 4.2.1
احسب العملية الصفية لجعل الإدخال في يساوي .
خطوة 4.2.2
بسّط .
خطوة 4.3
اضرب كل عنصر من في لجعل الإدخال في يساوي .
خطوة 4.3.1
اضرب كل عنصر من في لجعل الإدخال في يساوي .
خطوة 4.3.2
بسّط .
خطوة 4.4
احسب العملية الصفية لجعل الإدخال في يساوي .
خطوة 4.4.1
احسب العملية الصفية لجعل الإدخال في يساوي .
خطوة 4.4.2
بسّط .
خطوة 5
استخدِم مصفوفة النتيجة لبيان الحلول النهائية لسلسلة المعادلات.
خطوة 6
اطرح من كلا المتعادلين.
خطوة 7
اطرح من كلا المتعادلين.
خطوة 8
الحل هو مجموعة الأزواج المرتبة التي تجعل النظام صحيحًا.
خطوة 9
لا يوجد تحويل للمتجه الموجود لأنه لا يوجد حل فريد لسلسلة المعادلات. وبما أنه لا يوجد تحويل خطي، إذن المتجه ليس موجودًا في الفضاء العمودي.
ليس في الفضاء العمودي