الرياضيات المتناهية الأمثلة
[413144441]⎡⎢⎣413144441⎤⎥⎦
خطوة 1
خطوة 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
خطوة 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
خطوة 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
خطوة 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4441|∣∣∣4441∣∣∣
خطوة 1.1.4
Multiply element a11a11 by its cofactor.
4|4441|4∣∣∣4441∣∣∣
خطوة 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1441|∣∣∣1441∣∣∣
خطوة 1.1.6
Multiply element a12a12 by its cofactor.
-1|1441|−1∣∣∣1441∣∣∣
خطوة 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1444|∣∣∣1444∣∣∣
خطوة 1.1.8
Multiply element a13a13 by its cofactor.
3|1444|3∣∣∣1444∣∣∣
خطوة 1.1.9
Add the terms together.
4|4441|-1|1441|+3|1444|4∣∣∣4441∣∣∣−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
4|4441|-1|1441|+3|1444|4∣∣∣4441∣∣∣−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
خطوة 1.2
احسِب قيمة |4441|∣∣∣4441∣∣∣.
خطوة 1.2.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4(4⋅1-4⋅4)-1|1441|+3|1444|4(4⋅1−4⋅4)−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
خطوة 1.2.2
بسّط المحدد.
خطوة 1.2.2.1
بسّط كل حد.
خطوة 1.2.2.1.1
اضرب 44 في 11.
4(4-4⋅4)-1|1441|+3|1444|4(4−4⋅4)−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
خطوة 1.2.2.1.2
اضرب -4−4 في 44.
4(4-16)-1|1441|+3|1444|4(4−16)−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
4(4-16)-1|1441|+3|1444|4(4−16)−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
خطوة 1.2.2.2
اطرح 1616 من 44.
4⋅-12-1|1441|+3|1444|4⋅−12−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
4⋅-12-1|1441|+3|1444|4⋅−12−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
4⋅-12-1|1441|+3|1444|4⋅−12−1∣∣∣1441∣∣∣+3∣∣∣1444∣∣∣
خطوة 1.3
احسِب قيمة |1441|∣∣∣1441∣∣∣.
خطوة 1.3.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4⋅-12-1(1⋅1-4⋅4)+3|1444|4⋅−12−1(1⋅1−4⋅4)+3∣∣∣1444∣∣∣
خطوة 1.3.2
بسّط المحدد.
خطوة 1.3.2.1
بسّط كل حد.
خطوة 1.3.2.1.1
اضرب 11 في 11.
4⋅-12-1(1-4⋅4)+3|1444|4⋅−12−1(1−4⋅4)+3∣∣∣1444∣∣∣
خطوة 1.3.2.1.2
اضرب -4−4 في 44.
4⋅-12-1(1-16)+3|1444|4⋅−12−1(1−16)+3∣∣∣1444∣∣∣
4⋅-12-1(1-16)+3|1444|4⋅−12−1(1−16)+3∣∣∣1444∣∣∣
خطوة 1.3.2.2
اطرح 1616 من 11.
4⋅-12-1⋅-15+3|1444|4⋅−12−1⋅−15+3∣∣∣1444∣∣∣
4⋅-12-1⋅-15+3|1444|4⋅−12−1⋅−15+3∣∣∣1444∣∣∣
4⋅-12-1⋅-15+3|1444|4⋅−12−1⋅−15+3∣∣∣1444∣∣∣
خطوة 1.4
احسِب قيمة |1444|∣∣∣1444∣∣∣.
خطوة 1.4.1
يمكن إيجاد محدد المصفوفة 2×22×2 باستخدام القاعدة |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4⋅-12-1⋅-15+3(1⋅4-4⋅4)4⋅−12−1⋅−15+3(1⋅4−4⋅4)
خطوة 1.4.2
بسّط المحدد.
خطوة 1.4.2.1
بسّط كل حد.
خطوة 1.4.2.1.1
اضرب 44 في 11.
4⋅-12-1⋅-15+3(4-4⋅4)4⋅−12−1⋅−15+3(4−4⋅4)
خطوة 1.4.2.1.2
اضرب -4−4 في 44.
4⋅-12-1⋅-15+3(4-16)4⋅−12−1⋅−15+3(4−16)
4⋅-12-1⋅-15+3(4-16)4⋅−12−1⋅−15+3(4−16)
خطوة 1.4.2.2
اطرح 1616 من 44.
4⋅-12-1⋅-15+3⋅-124⋅−12−1⋅−15+3⋅−12
4⋅-12-1⋅-15+3⋅-124⋅−12−1⋅−15+3⋅−12
4⋅-12-1⋅-15+3⋅-124⋅−12−1⋅−15+3⋅−12
خطوة 1.5
بسّط المحدد.
خطوة 1.5.1
بسّط كل حد.
خطوة 1.5.1.1
اضرب 44 في -12−12.
-48-1⋅-15+3⋅-12−48−1⋅−15+3⋅−12
خطوة 1.5.1.2
اضرب -1−1 في -15−15.
-48+15+3⋅-12−48+15+3⋅−12
خطوة 1.5.1.3
اضرب 33 في -12−12.
-48+15-36−48+15−36
-48+15-36−48+15−36
خطوة 1.5.2
أضف -48−48 و1515.
-33-36−33−36
خطوة 1.5.3
اطرح 3636 من -33−33.
-69−69
-69−69
-69−69
خطوة 2
Since the determinant is non-zero, the inverse exists.
خطوة 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[413100144010441001]⎡⎢⎣413100144010441001⎤⎥⎦
خطوة 4
خطوة 4.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
خطوة 4.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[441434140404144010441001]⎡⎢
⎢⎣441434140404144010441001⎤⎥
⎥⎦
خطوة 4.1.2
بسّط R1R1.
[114341400144010441001]⎡⎢
⎢⎣114341400144010441001⎤⎥
⎥⎦
[114341400144010441001]⎡⎢
⎢⎣114341400144010441001⎤⎥
⎥⎦
خطوة 4.2
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
خطوة 4.2.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,1 a 0.
[1143414001-14-144-340-141-00-0441001]
خطوة 4.2.2
بسّط R2.
[1143414000154134-1410441001]
[1143414000154134-1410441001]
خطوة 4.3
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
خطوة 4.3.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[1143414000154134-14104-4⋅14-4(14)1-4(34)0-4(14)0-4⋅01-4⋅0]
خطوة 4.3.2
بسّط R3.
[1143414000154134-141003-2-101]
[1143414000154134-141003-2-101]
خطوة 4.4
Multiply each element of R2 by 415 to make the entry at 2,2 a 1.
خطوة 4.4.1
Multiply each element of R2 by 415 to make the entry at 2,2 a 1.
[114341400415⋅0415⋅154415⋅134415(-14)415⋅1415⋅003-2-101]
خطوة 4.4.2
بسّط R2.
[114341400011315-115415003-2-101]
[114341400011315-115415003-2-101]
خطوة 4.5
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
خطوة 4.5.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[114341400011315-11541500-3⋅03-3⋅1-2-3(1315)-1-3(-115)0-3(415)1-3⋅0]
خطوة 4.5.2
بسّط R3.
[114341400011315-115415000-235-45-451]
[114341400011315-115415000-235-45-451]
خطوة 4.6
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
خطوة 4.6.1
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
[114341400011315-1154150-523⋅0-523⋅0-523(-235)-523(-45)-523(-45)-523⋅1]
خطوة 4.6.2
بسّط R3.
[114341400011315-1154150001423423-523]
[114341400011315-1154150001423423-523]
خطوة 4.7
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
خطوة 4.7.1
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
[1143414000-1315⋅01-1315⋅01315-1315⋅1-115-1315⋅423415-1315⋅4230-1315(-523)001423423-523]
خطوة 4.7.2
بسّط R2.
[114341400010-5238691369001423423-523]
[114341400010-5238691369001423423-523]
خطوة 4.8
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
خطوة 4.8.1
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
[1-34⋅014-34⋅034-34⋅114-34⋅4230-34⋅4230-34(-523)010-5238691369001423423-523]
خطوة 4.8.2
بسّط R1.
[11401192-3231592010-5238691369001423423-523]
[11401192-3231592010-5238691369001423423-523]
خطوة 4.9
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
خطوة 4.9.1
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
[1-14⋅014-14⋅10-14⋅01192-14(-523)-323-14⋅8691592-14⋅1369010-5238691369001423423-523]
خطوة 4.9.2
بسّط R1.
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
خطوة 5
The right half of the reduced row echelon form is the inverse.
[423-1169869-5238691369423423-523]