الأمثلة

إيجاد الميل لكل معادلة
,
خطوة 1
استخدِم صيغة تقاطع الميل لإيجاد الميل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.2
باستخدام صيغة تقاطع الميل، الميل هو .
خطوة 2
استخدِم صيغة تقاطع الميل لإيجاد الميل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 2.2
باستخدام صيغة تقاطع الميل، الميل هو .
خطوة 3
عيّن سلسلة المعادلات لإيجاد أي نقاط تقاطع.
خطوة 4
أوجِد حل سلسلة المعادلات لإيجاد نقطة التقاطع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
احذِف المتعادلين المتساويين في كل معادلة واجمع.
خطوة 4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
أضف إلى كلا المتعادلين.
خطوة 4.2.1.2
أضف و.
خطوة 4.2.2
اطرح من كلا المتعادلين.
خطوة 4.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اقسِم كل حد في على .
خطوة 4.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.3.2.1.2
اقسِم على .
خطوة 4.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.3.1
انقُل السالب أمام الكسر.
خطوة 4.3
احسِب قيمة عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
عوّض بقيمة التي تساوي .
خطوة 4.3.2
اضرب في .
خطوة 4.4
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 5
نظرًا إلى اختلاف الميول، سيكون للخطوط نقطة تقاطع واحدة فقط.
خطوة 6
إدخال مسألتك
يتطلب Mathway استخدام JavaScript ومتصفح حديث.